亚洲国产精品自在在线观看|久久亚洲国产精品五月天婷婷|狠狠狠久久久免费观看|欧美激情中文字幕精品自拍

    <b id="ojcb4"><legend id="ojcb4"></legend></b>

    <b id="ojcb4"><meter id="ojcb4"></meter></b>

      AI brain implant developed in Australia to help people with paralysis to control assistive technology

      Source: Xinhua| 2019-04-08 14:45:09|Editor: Xiaoxia
      Video PlayerClose

      SYDNEY, April 8 (Xinhua) -- A device, developed in Australia that uses artificially intelligent (AI) software to help people suffering from severe conditions of paralysis control assistive technology, has been granted approval for a world-first human trial on Monday.

      Set to take place at the Royal Melbourne Hospital, the advanced paperclip-sized implant called the Stentrode, will be placed inside the participants motor cortex -- an area of the brain which controls movement.

      With five patients cleared to take part in the trial, it's hoped the implant will be able to pick up signals in the brain and transmit their communications to a computer.

      "If this trial can successfully provide a brain-to-computer interface, it would allow people with these kinds of injuries and diseases to communicate -- this would be amazing," principal investigator Professor Peter Mitchell from the Royal Melbourne Hospital said.

      "In particular, motor-neuron disease sufferers, as well as other patients with severe paralysis, may see some benefits such as being able to control a mouse or keyboard through the use of this device. This would give people back a small amount of independence."

      The creator of the device, Associate Professor Thomas Oxley, who is also the chief executive officer of the trial's funder Synchron, said the technology works by recording brain signals via the implant which are then decoded by AI technology and transmitted to a computer.

      "These signals could be used by the individuals to control assistive technology e.g. personal computer, text generation, smart environment, mobility assist devices, that help with daily life, just by thinking and directly controlling special software," Oxley explained.

      "This could help the development of more user-friendly biotechnology for patients with neurological conditions."

      "It may also help to better understand how the human brain works in general," Oxley added.

      Trials are expected to begin sometime in mid-2019.

      TOP STORIES
      EDITOR’S CHOICE
      MOST VIEWED
      EXPLORE XINHUANET
      010020070750000000000000011100001379598481